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Gyration radius of a circular polymer under a topological constraint with excluded volume
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It is nontrivial whether the average size of a ring polymer should become smaller or larger under a topo-
logical constraint. Making use of some knot invariants, we numerically evaluate the mean-square radius of
gyration for ring polymers having a fixed knot type, where the ring polymers are given by self-avoiding
polygons consisting of freely jointed hard cylinders. We obtain plots of the gyration radius versus the number
of polygonal nodes for the trivial, trefoil, and figure-eight knots. We discuss possible asymptotic behaviors of
the gyration radius under the topological constraint. In the asymptotic limit, the size of a ring polymer with a
given knot is larger than that of no topological constraint when the polymer is thin, and the effective expansion
becomes weak when the polymer is thick enough.
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I. INTRODUCTION

The effect of a topological constraint should be nontriv
on physical quantities of a ring polymer such as the size
the ring polymer. Once a ring polymer is formed, its top
logical state, which is given by a knot, is fixed. However,
has not been established how to formulate the topolog
constraint on the ring polymer in terms of analytic metho
On the other hand, several numerical simulations have b
performed, investigating some statistical properties of r
polymers under topological constraints@1–13#. Through the
simulations, it has been found that a topological constra
may severely restrict the available degrees of freedom in
configuration space of a ring polymer, and can be signific
in its physical properties.

Recently, DNA knots are synthesized in experiments,
then separated into various knot types by the agarose
electrophoresis technique@14–17#. Under the electric field,
the charged macromolecules move through the network
the gel, and the migration rates should depend on their s
shapes, and charges. It is remarkable that the electropho
mobility of a circular DNA depends also on its knot type.
is observed that the more complicated the DNA knot is,
higher its mobility. The fact could be related to a comm
belief that the gyration radius of a knotted DNA should d
pend on its knot type.

In this paper, we discuss the mean-square radius of g
tion of circular polymers having a fixed knot type. We co
sider the question how the size of a ring polymer sho
depend on the lengthN under the topological constrain
Here the lengthN corresponds to the number of polygon
nodes, when we model the ring polymers by some s
avoiding polygons. We find that the effect of the topologic
constraint is not trivial. In fact, the mean-square radius
gyration for ring polymers under the topological constra
can be smaller or larger than that of the ring polymers un
no topological constraint.

II. CYLINDRICAL SELF-AVOIDING POLYGONS

Let us explain the model of ring polymers consisting
freely jointed hard cylinders@6,18#. The segments are give
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by hard cylinders with radiusr. They are ‘‘hard’’ in the sense
that there is no overlap allowed between any pair of non
jacent cylindrical segments, while adjacent segments
overlap: there is no constraint on any pair of adjacent cy
ders. The model was first introduced in Ref.@6# with the
Monte Carlo algorithm using the ‘‘hedgehog’’ configuration
of polygons. Recently, another method was introduced
constructing the cylindrical self-avoiding polygons@18#. It is
based on the algorithm of ring dimerization@5,19# for the
rod-bead model of self-avoiding polygons. We call it the c
lindrical ring-dimerization method. All the cylindrical self
avoiding polygons in this paper are constructed by the al
native method.

The cylinder radiusr and the numberN of segments of
the model are important in the theoretical explanation
DNA knots @15#: radiusr corresponds to the effective radiu
of negatively charged DNA’s surrounded by the clouds
counter ions. Thus, the model is closely related to the wo
like chain model for polyelectrolytes in electrolyte solution

The mean-square radius of gyrationR2 for the
cylindrical self-avoiding polygons is defined byR2

5(n,m51
N ^(RW n2RW m)2&/2N2, whereRW n is the position vector

of the n-th monomer andN is the number of nodes. Th
symbol^•& denotes the average overM samples of polygons
In this paper, we have constructed 18315 sets ofM5104

self-avoiding polygons ofN cylindrical segments with radius
r, whereN is given by 18 numbers from 20 to 1000 andr by
15 different values from 0.0 to 0.07.

III. METHOD FOR SELECTING POLYGONS
WITH THE SAME GIVEN KNOT

For a given knotK, we enumerate the numberMK of such
polygons out of theM polygons that have the same set
values of some knot invariants for the knot typeK. We em-
ploy two knot invariants, the determinantDK(21) of knot
and the Vassiliev-type invariantv2(K) of the second degree
as the tool for detecting the knot type of a given polyg
@20,21#.
©2001 The American Physical Society01-1



ut

m
tio

ly

n
re
e

is
w
fo
In

1.

en
a

o

ical
int

.0

ive

for

the
t

the
or

o-

ti
se
ed

ti-
se
re

u-
f

RAPID COMMUNICATIONS

MIYUKI K. SHIMAMURA AND TETSUO DEGUCHI PHYSICAL REVIEW E 64 020801~R!
The numberMK depends not only on the knot type, b
also on the step numberN and cylinder radiusr. Let us
consider the probabilityPtri v(N,r ) of a cylindrical self-
avoiding polygon ofN nodes with the cylinder radiusr being
a trivial knot @18#. Then, it is given by

Ptri v~N,r !5exp„2N/Nc~r !… ~1!

Here Nc(r ) is called the characteristic length of rando
knotting and can be approximated by an exponential func
of r: Nc(r )5Nc(0)exp(gr), whereg is a constant@18#.

IV. GYRATION RADIUS OF RING POLYMERS
UNDER A TOPOLOGICAL CONSTRAINT

The mean-square radius of gyrationRK
2 for knot typeK is

given by

RK
2 5

1

MK
(
i 51

MK

RK,i
2 , ~2!

whereRK,i
2 denotes the gyration radius of theith cylindrical

self-avoiding polygon that has the knot typeK, in the set of
M polygons. For the rod-bead model of self-avoiding po
gons,RK

2 has been evaluated for some different knots@22#.
Let us discuss our data of numerical estimates ofRK

2 . For
trivial, trefoil, and figure-eight knots, we find that the mea
square radius of gyration increases monotonically with
spect to the numberN of polygonal nodes. However, th
ratio RK

2 /R2 is not constant with respect toN. The graphs of
the ratioRK

2 /R2 against the step numberN are plotted in Fig.
1 for trivial and trefoil knots. Here the cylinder radius
given by 0.005, i.e., the diameter is given by 0.01. Here
recall thatR2 denotes the mean-square radius of gyration
the self-avoiding polygons with all possible knot types.
terms of RK

2 , R2 is given by the following: R2

5(KMKRK
2 /M . We recall that the numberMK gives differ-

ent values for different step numbersN or different knotsK.

FIG. 1. The ratioRK
2 /R2 versus the numberN of polygonal

nodes of the cylindrical self-avoiding polygons. Numerical es
mates ofRtri v

2 /R2 for r 50.005 are shown by black circles and tho
of Rtre

2 /R2 for r 50.005 by black triangles. In the inset, the enlarg
figure shows the numerical estimates ofRK

2 /R2 from N520 to 100
for the cases of trivial, trefoil, and figure-eight~41! knots.
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When the knotK is complicated,MK can be very small and
it may give a poor statistics toRK

2 .
Let us discuss the plots of the trivial knot shown in Fig.

The ratioRtri v
2 /R2 at N521 is almost given by 1.0. This is

consistent with the fact that trivial knots are dominant wh
N is small. Here we recall that the probability of being
trivial knot is given by Eq.~1!. On the other hand, the rati
Rtri v

2 /R2 increases with respect to the step numberN. Thus,
the size of the ring polymer enlarges under the topolog
constraint of being a trivial knot. The topological constra
gives an effective swelling effect in this case.

Let us consider the case of trefoil knot. The ratioRtre
2 /R2

is not always larger than 1.0. In fact, it is smaller than 1
whenN,200. The ratioRtre

2 /R2 is given by about 0.7 when
N521. Thus, the topological constraint gives an effect
shrinking effect on the ring polymer. WhenN.300 or 400,
the ratioRtre

2 /R2 becomes larger than 1.0 forr 50.005. Thus,
the topological constraint makes the ring polymer enlarge
largeN. However, whenr .0.03, the ratioRtre

2 /R2 becomes
smaller than 1.0 even forN51000, as shown in Fig. 2.

In Figs. 1 and 2, we see that the difference among
ratios of the gyration radii for trivial, trefoil, and figure-eigh
knots is much more clear in the small-N region than in the
large-N region. The dependence of the gyration radius of
ring polymer on its knot type could be more significant f
small N than for largeN. The effective shrinking of a thick
and finite ring polymer with a nontrivial knot might be ass
ciated with the concept of ideal knots or tight knots@23,24#.

The fitting curves in Figs. 1 and 2 are given by

RK
2

R2
5gK„12dK exp~2hKN!…. ~3!

-
FIG. 2. The ratioRK

2 /R2 versus the numberN of polygonal
nodes of the cylindrical self-avoiding polygons. Numerical es
mates ofRtri v

2 /R2 for r 50.04 are shown by black circles and tho
of Rtre

2 /R2 for r 50.04 by black triangles. The fitting parameters a
given by the follwing: for trivial knot,nK2n520.000460.068,
AK /A51.0460.59, BK2B520.363.1, andx251.1; for trefoil
knot, nK2n50.00660.101, AK /A51.0160.84, BK2B522.0
64.0, andx253.2. In the inset, the enlarged figure shows the n
merical estimates ofRK

2 /R2 from N520 to 100 for the cases o
trivial, trefoil, and figure-eight~41! knots.
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Here, the constantsgK , dK , andhK are fitting parameters
We see that the fitting curves in Figs. 1 and 2 are consis
with all the numerical estimates ofRK

2 in the range fromN
521 to 1000. Thus, the formula~3! effectively describes the
finite-size behavior ofRK

2 , although there is noa priori rea-
son for assuming it. For instance, the formula~3! can be not
appropriate as an asymptotic expansion. In Sec. 5, we s
introduce another formula to discuss the possible asymp
behaviors ofRK

2 .

V. ASYMPTOTIC BEHAVIORS OF RK
2

Let us discuss possible asymptotic behaviors of the g
tion radius of the ring polymer under a topological co
straint. We may assume that whenN is very large,RK

2 can be
approximated by

RK
2 5AKN2nK@11BKN2DK1O~1/N!#. ~4!

The expansion is consistent with renormalization group
guments, and hence it should be valid for the case of asy
totically largeN. The exponentnK and the amplitudeAK can
be evaluated by applying the formula~4! to the numerical
data of RK

2 for large values ofN. Here we note that the
expansion~4! is not effective for smallN. In fact, whenN
<200, it does not give any good fitting curves to the data
Figs. 1 or 2.

Let us now discuss the exponentnK . We have analyzed
the plots ofRK

2 /R2 given in Fig. 1 for trivial and trefoil knots
by the least-square method with respect to the following f
mula: RK

2 /R25„AK /A…NnK2n(11(BK2B)N2D1O(1/N)).
Here we have assumedDK5D50.5, which is consisten
with the scaling expansion. Then, we obtain the followi
estimates: for trivial knot,nK2n50.00560.103, AK /A
51.1860.99, BK2B521.764.0; for trefoil knot, nK2n
50.00960.090, AK /A51.1860.85, BK2B523.563.0.
To each of the knots, we have applied the formula~4! to the
eight points withN>300 in Fig. 1. Thex2 values are given
by 4.3 and 6.2 for trivial and trefoil knots, respectively. F
other values of radiusr, we have similar results. Thus, fo
trivial and trefoil knots, the exponentnK should agree with
the exponentn of the mean-square radius of gyrationR2,
within the error bars.

There are also other evidences supportingnK5n, i.e.,
nK50.588, for trivial and trefoil knots. In fact, the plots o
the ratioRK

2 /R2 versus the numberN in Figs. 1 and 2 are
likely to approach some horizontal lines at some largeN. It is
also the case with some other values of cylinder radiusr. It is
clear particularly for trivial knot. Thus, at least for trivia
knot, we can easily conclude that the exponentnK should
coincide with the exponentn. We note that even the fitting
formula ~3! is consistent with the coincidence of the exp
nents:nK5n. Thus, all the numerical results obtained in t
paper suggestnK5n for trivial and trefoil knots. It is also
consistent with the observation for the self-avoiding polyg
on a lattice in Refs.@12,13# that the exponentnK should be
independent of the knot type.

Let us now consider the amplitudeAK of the asymptotic
expansion~4!. In Fig. 3, the numerical plots of the rati
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AK /A versus the radiusr are shown for trivial and trefoil
knots. The ratio is evaluated by the following formul
RK

2 /R25(AK /A)„11(BK2B)N2D1O(1/N)…. Here, we
have assumednK5n and DK5D50.5. Furthermore, we
have applied it only to the data withN>300.

Whenr is small, the ratioAK /A in Fig. 3 is larger than 1.0
for both trivial and trefoil knots. It is remarkable that th
asymptotic ratioAK /A can be larger than 1.0 when the rin
polymer is thin enough. We can easily confirm it also in F
1, observing the increasing behavior of the plots ofRtri v

2 /R2

versusN. Thus, the topological constraint gives an effecti
expansion to the ring polymer with small radiusr.

Interestingly, we see in Fig. 3 that the ratioAK /A de-
creases monotonically with respect to the cylinder radiur.
One might expect that the ring polymer with larger exclud
volume should become much larger. In reality, however,
the ring polymer under the topological constraint, the ra
AK /A decreases if the excluded volume parameter beco
large. It is as if the excluded volume effect could weaken
effective expansion derived from the topological constra
We notice in Fig. 3 thatAK /A might become close to the
value 1.0 whenr is thick enough. Due to the poor statistic
we cannot determine whether it really does or not. Howev
if it does, then it is consistent with the interpretation on t
lattice model of Refs.@12,13#—that AK should be indepen-
dent of knot type.

It is quite nontrivial that AK /A that is valid in the
asymptotic expansion can be larger than 1.0, and the r
decreases with respect to the radiusr. Let us give one pos-
sible explanation for it. First, we note thatR2 is given by the
average ofRK

2 over all possible knots:R25(KRK
2 PK(N).

The fact:AK /A.1.0 suggests that there are large number
knots smaller than the knotK. Second, we recall the finite-N
behavior of Rtre

2 : In Figs. 1 and 2 we see that the rat
Rtre

2 /R2 is much smaller than 1.0 whenN is small, while it
increases with respect toN and finally becomes constant. W

FIG. 3. The ratioAK /A versus the cylinder radiusr for the
cylindrical self-avoiding polygons. The values ofAK /A for the
trivial knot and the trefoil knot are shown by black circles and bla
triangles, respectively. Each of the black triangles are sligh
shifted rightward by one tenth of the value of radiusr, for graphical
convenience.
1-3
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consider that whenN is small, the size of trefoil knot is sma
due to a finite-size effect, while whenN is asymptotically
large thenRtre

2 /R2 becomes almost constant. For a giv
knot K1, if we take N large enough, then the ratioRK1

2 /R2

becomes constant with respect toN, while the majority of
knots possible inN-noded polygons should be much mo
complex than the knotK1 and their sizes should be muc
smaller than that of the knotK1. Thus,R2 can be smaller
than RK1

2 and the ratioAK1
/A can be larger than the valu

1.0.
We remark thatRtri v

2 /R2 is always larger than 1.0 both fo
finite N and asymptotically largeN. For the finite-N case, it
is clear from Figs. 1 and 2 thatRtri v

2 /R2.1. For the
,

n.

ifi-

b

.G

02080
asymptotic case, it is suggested from Fig. 3 thatAtri v /A
should be larger than 1.0 for some small values of radiur.
Thus, the property:Rtri v

2 /R2.1 should persist in the
asymptotic limit, as far as the data analysis is concerned

Summarizing the numerical results on the asymptotic
haviors, we conclude that the topological constraint on a r
polymer gives an effective expansion when the radiusr is
small, and also that the expanding effect becomes wea
when the radiusr becomes larger and it may vanish when t
radiusr is large enough. The results suggest that there sho
be a ‘‘phase transition,’’ where it is controlled by th
excluded-volume parameter whether the topological c
straint gives an effective expansion to the ring polymer
not.
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