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Gyration radius of a circular polymer under a topological constraint with excluded volume
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It is nontrivial whether the average size of a ring polymer should become smaller or larger under a topo-
logical constraint. Making use of some knot invariants, we numerically evaluate the mean-square radius of
gyration for ring polymers having a fixed knot type, where the ring polymers are given by self-avoiding
polygons consisting of freely jointed hard cylinders. We obtain plots of the gyration radius versus the number
of polygonal nodes for the trivial, trefoil, and figure-eight knots. We discuss possible asymptotic behaviors of
the gyration radius under the topological constraint. In the asymptotic limit, the size of a ring polymer with a
given knot is larger than that of no topological constraint when the polymer is thin, and the effective expansion
becomes weak when the polymer is thick enough.
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[. INTRODUCTION by hard cylinders with radius They are “hard” in the sense
that there is no overlap allowed between any pair of nonad-
The effect of a topological constraint should be nontrivialjacent cylindrical segments, while adjacent segments can
on physical quantities of a ring polymer such as the size obverlap: there is no constraint on any pair of adjacent cylin-
the ring polymer. Once a ring polymer is formed, its topo-gers. The model was first introduced in REB] with the

logical state, which i§ given by a knot, is fixed. However,_it onte Carlo algorithm using the “hedgehog” configurations
has not been established how to formulate the topologic f polygons. Recently, another method was introduced for

constraint on the ring polymer in terms of analytic methods. . O s .
On the other hand, several numerical simulations have be gonstructing the cylindrical self-avoiding polygoris]. It is

n ) oAV IO M
performed, investigating some statistical properties of ringrbased on the algorithm of_n_ng dimerizati¢B, 19| fo_r the
polymers under topological constraifits—13. Through the 'od-bead model of self-avoiding polygons. We call it the cy-
simulations, it has been found that a topological constrainfndrical ring-dimerization method. All the cylindrical self-
may severely restrict the available degrees of freedom in th@veiding polygons in this paper are constructed by the alter-

configuration space of a ring polymer, and can be significanfative method.

in its physical properties. The cylinder radiug and the numbeN of segments of
Recently, DNA knots are synthesized in experiments, andhe model are important in the theoretical explanation of

then separated into various knot types by the agarose_gelDNA knots[15]: radiusr corresponds to the effective radius

electrophoresis techniqué&4—17. Under the electric field, of negatively charged DNAs surrounded by the clouds of

the charged macromolecules move through the network ofounter ions. Thus, the model is closely related to the worm-

the gel, and the migration rates should depend on their sizebke chain model for polyelectrolytes in electrolyte solutions.

shapes, and charges. It is remarkable that the electrophoretic The mean-square radius of gyratioR?> for the

mot:)ility ofda tk:‘irculhar DNA depenlds al(Sjo r?n its an?t type. Irt] cylindrical self-avoiding polygons is defined byR?

is observed that the more complicated the DNA knot is, the_ ¢N =R Y 2 S o

higher its mobility. The fact could be related to a common Znm={(Ra~Rm)")/2N", whereR, is the position vector

belief that the gyration radius of a knotted DNA should de—Of the n-th monomer and\ is the number of nodes. The
) symbol(-) denotes the average owdrsamples of polygons.
pend on its knot type.

In this paper, we discuss the mean-square radius of gyrép this paper, we have consf[ruc_tedeBS sets OfM - 10‘.1
tion of circular polymers having a fixed knot type. We con- self-avoiding polygons o cylindrical segments with radius

sider the question how the size of a ring polymer should’ whereN is given by 18 numbers from 20 to 1000 antly

depend on the length under the topological constraint, 1° different values from 0.0 to 0.07.

Here the lengthN corresponds to the number of polygonal

nodes, when we model the ring polymers by some self-

avoiding polygons. We find that the effect of the topological Ill. METHOD FOR SELECTING POLYGONS
constraint is not trivial. In fact, the mean-square radius of WITH THE SAME GIVEN KNOT

gyration for ring polymers under the topological constraint For a given knoK, we enumerate the numbkt, of such

bolygons out of theM polygons that have the same set of
values of some knot invariants for the knot tyiieWe em-
ploy two knot invariants, the determinadt(—1) of knot
and the Vassiliev-type invariant,(K) of the second degree,

Let us explain the model of ring polymers consisting of as the tool for detecting the knot type of a given polygon
freely jointed hard cylinderf6,18]. The segments are given [20,21].

no topological constraint.

II. CYLINDRICAL SELF-AVOIDING POLYGONS
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FIG. 1. The ratioRZ/R? versus the numbeN of polygonal FIG. 2. The ratioRZ/R? versus the numbeN of polygonal
nodes of the cylindrical self-avoiding polygons. Numerical esti-nodes of the cylindrical self-avoiding polygons. Numerical esti-
mates oRR7;;,/R? for r =0.005 are shown by black circles and those mates ofR%;,/R? for r =0.04 are shown by black circles and those
of RZ./R? for r =0.005 by black triangles. In the inset, the enlarged of R2 /R for r =0.04 by black triangles. The fitting parameters are
figure shows the numerical estimatesR§/R? from N=20to 100  given by the follwing: for trivial knot,v,— r=—0.0004-0.068,
for the cases of trivial, trefoil, and figure-eigftl) knots. Ax/A=1.04+0.59, By—B=-0.3£3.1, andX2: 1.1; for trefoil

knot, vx—»=0.006£0.101, Ax/A=1.01+0.84, Bx—B=-2.0

The numbeM depends not only on the knot type, but *4.0, andy?=3.2. In the inset, the enlarged figure shows the nu-
also on the step numbeX¥ and cylinder radius. Let us merical estimates ORﬁ/R2 from N=20 to 100 for the cases of
consider the probabilityP,;,(N,r) of a cylindrical self- trivial, trefoil, and figure-eight41) knots.
avoiding polygon ol nodes with the cylinder radiusbeing

a trivial knot[18]. Then, it is given by When the knoK is complicatedM ¢ can be very small and

) it may give a poor statistics tBﬁ.
Let us discuss the plots of the trivial knot shown in Fig. 1.

- 2 2 _ . . . .
Here N.(r) is called the characteristic length of random ' "€ ratioRy;,/R*atN=21 is aimost given by 1.0. This is
knotting and can be approximated by an exponential functiofgonsistent with the fact that trivial knots are dominant when

of r: N(r)=N(0)exphr), wherey is a constanf18]. N_ is small._ He_re we recall that the probability of being a
trivial knot is given by Eq(1). On the other hand, the ratio

R2;,/R? increases with respect to the step numiefThus,
the size of the ring polymer enlarges under the topological
constraint of being a trivial knot. The topological constraint
gives an effective swelling effect in this case.

Let us consider the case of trefoil knot. The re@p,/R?
is not always larger than 1.0. In fact, it is smaller than 1.0
whenN<200. The raticR? ./R? is given by about 0.7 when
N=21. Thus, the topological constraint gives an effective
shrinking effect on the ring polymer. Whexi>300 or 400,

; 2 2
whereRg ; denotes the gyration radius of tité cylindrical the ratioRy,¢/R” becomes larger than 1.0 for=0.005. Thus,
self-avoiding polygon that has the knot tylein the set of the topological constraint makes the ring pzolyn;er enlarge for
M polygons. For the rod-bead model of self-avoiding poly-argeN. However, wherr>0.03, the raticR;,./R” becomes
gons,R% has been evaluated for some different kri@a]. smaller than 1.0 even fdd=1000, as shown in Fig. 2.

Let us discuss our data of numerical estimateRpf For In Figs. 1 and 2, we see that the difference among the
trivial, trefoil, and figure-eight knots, we find that the mean- ratios 9f the gyration radii f_or trivial, tref0|l,.and f|gur.e-e|ght
square radius of gyration increases monotonically with re-knOtS IS mL_JCh more clear in the small-reg|0_n than n the
spect to the numbeN of polygonal nodes. However, the IgrgeN region. The dependence of the gyratlon. raq]us of the
ratio Flﬁ/R2 is not constant with respect té. The graphs of fing polymer on its knot type coulq be more S|gn|f|can_t for
the ratioRﬁ/Rz against the step numbdrare plotted in Fig. small N than for largeN. The effective shrinking of a thick

1 for trivial and trefoil knots. Here the cylinder radius is and finite ring polymer with a nontrivial knot might be asso-

. . . o ciated with the concept of ideal knots or tight kn{28,24).
given by 0.005, i.e., the diameter is given by 0.01. Here we The fitting curves in Figs. 1 and 2 are given by

recall thatR? denotes the mean-square radius of gyration for
the self-avoiding polygons with all possible knot types. In
terms of RZ, R? is given by the following: R? R2
_ 2 ; ;

=2xMgRk/M. We recall that the numbeMK gives differ- _';: v (L= 8 exp — 7 N)).
ent values for different step numbeéxsor different knotsK. R

Pirip(N,1)=exp(—N/N(r))

IV. GYRATION RADIUS OF RING POLYMERS
UNDER A TOPOLOGICAL CONSTRAINT

The mean-square radius of gyratiaﬁ for knot typeK is
given by

2 1 - 2
R =—i§1 R% i, 2

()
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Here, the constantsy, dx, and nk are fitting parameters. 1.5 —
We see that the fitting curves in Figs. 1 and 2 are consistent [ % ]
with all the numerical estimates cﬁﬁ in the range fromN 1.4 -{ T ¢ trivial | J
=21 to 1000. Thus, the formul@) effectively describes the [ F k
finite-size behavior oRZ , although there is na priori rea- 2 13} % : v trefoit |
son for assuming it. For instance, the form(® can be not f [ ﬁ %ﬁ ]
appropriate as an asymptotic expansion. In Sec. 5, we shall 3 1.2 f $ Ii ]
introduce another formula to discuss the possible asymptotic Ez ; 1
behaviors ofR . <11l # ; ]
V. ASYMPTOTIC BEHAVIORS OF Rﬁ 1 - g ii% -
Let us discuss possible asymptotic behaviors of the gyra- 0.9 b T ]
tion radius of the ring polymer under a topological con- " 0.001 0.01 0.1
straint. We may assume that whisris very large,R2 can be r: cylinder radius

approximated b
PP y FIG. 3. The ratioAg/A versus the cylinder radius for the

Rﬁ:AKNZVK[1+ BKN*AK+ O(1/N)]. (4) cylindrical self-avoiding polygons. The values @8 /A for the
trivial knot and the trefoil knot are shown by black circles and black
The expansion is consistent with renormalization group artriangles, respectively. Each of the black triangles are slightly
guments, and hence it should be valid for the case of asymyshifted rightward by one tenth of the value of radfuor graphical
totically largeN. The exponeniy and the amplitudé\ can ~ convenience.
be evaluated by applying the formu(d) to the numerical
data of RZ for large values ofN. Here we note that the Ax/A versus the radius are shown for trivial and trefoil
expansion(4) is not effective for smalN. In fact, whenN knots. The ratio is evaluated by the following formula:
<200, it does not give any good fitting curves to the data inRﬁ/R2=(AK IA)(1+(Bck—B)N"2+0O(1/N)). Here, we
Figs. 1 or 2. have assumed=v and Ax=A=0.5. Furthermore, we
Let us now discuss the exponent. We have analyzed have applied it only to the data witk=300.

the plots ofRZ/R? given in Fig. 1 for trivial and trefoil knots Whenr is small, the raticAg /A in Fig. 3 is larger than 1.0
by the least-square method with respect to the following forfor both trivial and trefoil knots. It is remarkable that the
mula: RZ/R?=(Ag /AN "(1+(Bx—B)N"2+O(1/N)).  asymptotic raticA, /A can be larger than 1.0 when the ring
Here we have assumefl,=A=0.5, which is consistent polymer is thin enough. We can easily confirm it also in Fig.
with the scaling expansion. Then, we obtain the followingl, observing the increasing behavior of the plot@f,/R?
estimates: for trivial knot,vx—v»=0.005+0.103, Ax/A versusN. Thus, the topological constraint gives an effective
=1.18+0.99, Bx—B=—1.7+4.0; for trefoil knot, vx—v  €xpansion to the ring polymer with small radius
=0.009+0.090, A /A=1.18+0.85, Bx—B=—3.5+3.0. Interestingly, we see in Fig. 3 that the ratfy /A de-
To each of the knots, we have applied the formdlato the ~ creases monotonically with respect to the cylinder radius
eight points withN=300 in Fig. 1. They? values are given One might expect that the ring polymer with larger excluded
by 4.3 and 6.2 for trivial and trefoil knots, respectively. For volume should become much larger. In reality, however, for
other values of radius, we have similar results. Thus, for the ring polymer under the topological constraint, the ratio
trivial and trefoil knots, the exponentc should agree with Ak /A decreases if the excluded volume parameter becomes

the exponentr of the mean-square radius of gyrati®f, large. Itis as if the excluded volume effect could weaken the
within the error bars. effective expansion derived from the topological constraint.
There are also other evidences supporting=v, i.e.,, We notice in Fig. 3 thatAc /A might become close to the
v =0.588, for trivial and trefoil knots. In fact, the plots of value 1.0 wherr is thick enough. Due to the poor statistics,
the ratio RZ/R? versus the numbeN in Figs. 1 and 2 are We cannot determine whether it really does or not. However,
likely to approach some horizontal lines at some Ia¥gé is if it.does, then it is consistent with the interpreta_tion on the
also the case with some other values of cylinder radiltsis ~ lattice model of Refs[12,13—that A should be indepen-
clear particularly for trivial knot. Thus, at least for trivial dent of knot type. _ o
knot, we can easily conclude that the exponegtshould It is quite nontrivial thatAy/A that is valid in the
coincide with the exponent. We note that even the fitting aSymptotic expansion can be larger than 1.0, and the ratio
formula (3) is consistent with the coincidence of the expo- decreases with respect to the radiud.et us give one pos-
nents: v = ». Thus, all the numerical results obtained in the Sible explanation for it. First, we note th&f is given by the
paper suggesty = for trivial and trefoil knots. It is also average ofRg over all possible knotsR*=3yRgPk(N).
consistent with the observation for the self-avoiding polygonThe fact:Ax /A>1.0 suggests that there are large number of
on a lattice in Refs[12,13 that the exponenty should be knots smaller than the kn#t. Second, we recall the finiti-
independent of the knot type. behavior ofR2.: In Figs. 1 and 2 we see that the ratio
Let us now consider the amplituds of the asymptotic R2./R? is much smaller than 1.0 wheX is small, while it
expansion(4). In Fig. 3, the numerical plots of the ratio increases with respect ddand finally becomes constant. We
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consider that whei is small, the size of trefoil knot is small asymptotic case, it is suggested from Fig. 3 thgt, /A

due to a finite-size effect, while wheN is asymptotically = should be larger than 1.0 for some small values of radius
large thenR2./R? becomes almost constant. For a givenThus, the property:R2, /R>>1 should persist in the
knot K, if we take N large enough, then the raﬂail/w asymptotic _Iir_nit, as far as the data analysis is concern.ed.
becomes constant with respect Mo while the majority of Summarizing the numerical results on the asymptotic be-
knots possible iMN-noded polygons should be much more aviors, we conclude tha}t the topolqg|cal constraint on aring
complex than the knok, and ther sizes should be much SV, DR T BISECNE SRR BIRE TC EE e
smaller than that of the knd{,. Thus,R“ can be smaller '

P . when the radius becomes larger and it may vanish when the
than RKl and the rat'OAKllA can be larger than the value radiusr is large enough. The results suggest that there should

1.0. be a “phase transition,” where it is controlled by the

We remark thaR?;,/R? is always larger than 1.0 both for excluded-volume parameter whether the topological con-
finite N and asymptotically largél. For the finiteN case, it  straint gives an effective expansion to the ring polymer or
is clear from Figs. 1 and 2 thaRZ, /R®>>1. For the not.
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